当前位置:首页 >  > 人才教育 

人才教育

智慧物流发展概述及安防产品技术应用
字号:T|T [2018-04-16]       作者:中国安防行业网

400亿件,这是中国快递业2017年全年运送的包裹数量,比美国、日本、欧盟加起来还多,超过全球总量的40%。大数据、云计算、人工智能……融入新技术的智慧物流,推动整个快递业迅猛发展,成为支撑起我国互联网商业贸易高速运转的新动能。

 

前不久平昌冬奥会闭幕式上的“北京八分钟”,出现了智能搬运机器人等智慧物流元素。该组镜头取自京东“亚洲一号”的无人分拣中心,运用的是京东X事业部研发的最新技术。自2016年5月成立以来,这个名字略带神秘、有着700名研发人员的部门一直专注于无人仓、无人机、无人车等一系列智慧物流尖端项目。

 

如今,以京东为代表的中国新一代物流人正积极布局,着力实现操作无人化、运营智能化和决策智慧化,构建预测、库存、仓储、运输、配送全链路智慧物流体系,打造一个又一个中国骄傲。

 

一、智慧物流概述

 

智能物流是利用集成智能化技术,使物流系统能模仿人的智能,具有思维,感知,学习,推理判断和自行解决物流中某些问题的能力。智能物流的未来发展将会体现出四个特点:智能化,一体化和层次化,柔性化与社会化。在物流作业过程中的大量运筹与决策的智能化;以物流管理为核心,实现物流过程中运输,存储,包装,装卸等环节的一体化和智能物流系统的层次化;智能物流的发展会更加突出“以顾客为中心”的理念,根据消费者需求变化来灵活调节生产工艺;智能物流的发展将会促进区域经济的发展和世界资源优化配置,实现社会化。 通过智能物流系统的四个智能机理,即信息的智能获取技术,智能传递技术,智能处理技术,智能运用技术。

 

二、智慧物流中的安防及相关技术

 

自动识别技术

 

自动识别技术是以计算机、光、机、电、通信等技术的发展为基础的一种高度自动化的数据采集技术。它通过应用一定的识别装置,自动地获取被识别物体的相关信息,并提供给后台的处理系统来完成相关后续处理的一种技术。它能够帮助人们快速而又准确地进行海量数据的自动采集和输入,在运输、仓储、配送等方面已得到广泛的应用。经过近30年的发展,自动识别技术已经发展成为由条码识别技术、智能卡识别技术、光字符识别技术、射频识别技术、生物识别技术等组成的综合技术,并正在向集成应用的方向发展。 条码识别技术是目前使用最广泛的自动识别技术,它是利用光电扫描设备识读条码符号,从而实现信息自动录入。条码是由一组按特定规则排列的条、空及对应字符组成的表示一定信息的符号。不同的码制,条码符号的组成规则不同。较常使用的码制有: EAN/ UPC 条码、128 条码、ITF - 14 条码、交插二五条码、三九条码、库德巴条码等。 射频识别(RFID)技术是近几年发展起来的现代自动识别技术,它是利用感应、无线电波或微波技术的读写器设备对射频标签进行非接触式识读,达到对数据自动采集的目的。它可以识别高速运动物体,也可以同时识读多个对象,具有抗恶劣环境、保密性强等特点。 生物识别技术是利用人类自身生理或行为特征进行身份认定的一种技术。生物特征包括手形、指纹、脸形、虹膜、视网膜、脉搏、耳廓等,行为特征包括签字、声音等。由于人体特征具有不可复制的特性,这一技术的安全性较传统意义上的身份验证机制有很大的提高。人们已经发展了虹膜识别技术、视网膜识别技术、面部识别技术、签名识别技术、声音识别技术、指纹识别技术等六种生物识别技术。

 

数据挖掘技术

 

数据仓库出现在20 世纪80 年代中期,它是一个面向主题的、集成的、非易失的、时变的数据集合,数据仓库的目标是把来源不同的、结构相异的数据经加工后在数据仓库中存储、提取和维护,它支持全面的、大量的复杂数据的分析处理和高层次的决策支持。数据仓库使用户拥有任意提取数据的自由,而不干扰业务数据库的正常运行。 数据挖掘是从大量的、不完全的、有噪声的、模糊的及随机的实际应用数据中, 挖掘出隐含的、未知的、对决策有潜在价值的知识和规则的过程。一般分为描述型数据挖掘和预测型数据挖掘两种。描述型数据挖掘包括数据总结、聚类及关联分析等,预测型数据挖掘包括分类、回归及时间序列分析等。其目的是通过对数据的统计、分析、综合、归纳和推理, 揭示事件间的相互关系,预测未来的发展趋势,为企业的决策者提供决策依据。

 

人工智能技术

 

人工智能就是探索研究用各种机器模拟人类智能的途径,使人类的智能得以物化与延伸的一门学科。它借鉴仿生学思想,用数学语言抽象描述知识,用以模仿生物体系和人类的智能机制,主要的方法有神经网络、进化计算和粒度计算三种。 神经网络:神经网络是在生物神经网络研究的基础上模拟人类的形象直觉思维,根据生物神经元和神经网络的特点,通过简化、归纳,提炼总结出来的一类并行处理网络。神经网络的主要功能主要有联想记忆、分类聚类和优化计算等。虽然神经网络具有结构复杂、可解释性差、训练时间长等缺点,但由于其对噪声数据的高承受能力和低错误率的优点,以及各种网络训练算法如网络剪枝算法和规则提取算法的不断提出与完善,使得神经网络在数据挖掘中的应用越来越为广大使用者所青睐。 进化计算:进化计算是模拟生物进化理论而发展起来的一种通用的问题求解的方法。因为它来源于自然界的生物进化,所以它具有自然界生物所共有的极强的适应性特点,这使得它能够解决那些难以用传统方法来解决的复杂问题。它采用了多点并行搜索的方式,通过选择、交叉和变异等进化操作,反复叠代,在个体的适应度值的指导下,使得每代进化的结果都优于上一代,如此逐代进化,直至产生全局最优解或全局近优解。其中最具代表性的就是遗传算法,它是基于自然界的生物遗传进化机理而演化出来的一种自适应优化算法。

 

GIS技术

 

GIS是打造智能物流的关键技术与工具,使用GIS可以构建物流一张图,将订单信息、网点信息、送货信息、车辆信息、客户信息等数据都在一张图中进行管理,实现快速智能分单、网点合理布局、送货路线合理规划、包裹监控与管理。

 

GIS技术可以帮助物流企业实现基于地图的服务,比如:1、网点标注:将物流企业的网点及网点信息(如地址、电话、提送货等信息)标注到地图上,便于用户和企业管理者快速查询。2、片区划分:从“地理空间”的角度管理大数据,为物流业务系统提供业务区划管理基础服务,如划分物流分单责任区等,并与网点进行关联。3、快速分单:使用GIS地址匹配技术,搜索定位区划单元,将地址快速分派到区域及网点。并根据该物流区划单元的属性找到责任人以实现“最后一公里”配送。4、车辆监控管理系统,从货物出库到到达客户手中全程监控,减少货物丢失;合理调度车辆,提高车辆利用率;各种报警设置,保证货物司机车辆安全,节省企业资源。5、物流配送路线规划辅助系统用于辅助物流配送规划。合理规划路线,保证货物快速到达,节省企业资源,提高用户满意度。6、数据统计与服务,将物流企业的数据信息在地图上可视化直观显示,通过科学的业务模型、GIS专业算法和空间挖掘分析,洞察通过其他方式无法了解的趋势和内在关系,从而为企业的各种商业行为,如制定市场营销策略、规划物流路线、合理选址分析、分析预测发展趋势等构建良好的基础,使商业决策系统更加智能和精准,从而帮助物流企业获取更大的市场契机。

 

三、智慧物流的发展趋势

 

首先,物流自动化将迎来跨越式发展。在新零售时代,“线上线下一盘货,服务产品一体化”将长期、全面的影响物流业发展。未来依托共享IT平台,每一个人、每一个辆车、每一个闲置的仓储库房,都有可能成为物流的共享环节,物流资源将像云计算一样,按需付费,碎片化的运力、仓储资源都有可能会参与到社会化物流环节中。据不完全统计,截止到2017年,全国已累计建成自动化立体库2600多座,烟草、医药零售、电商是主要应用领域,据预测,我国物流自动化改造市场空间将达到1000多亿。

 

其次,大数据促进物流供应链优化。电商大数据提高物流配送效率,所有订单信息发送到企业配送仓库,智能仓储可在最短时间内根据买家地址检索存放商品的最近仓储中心位置,实施就近出库,快递部门根据订单数量装车,由无人驾驶飞机或汽车自动运输到指定位置,节约成本,提高效率。依托智能制造兴起的云仓,将成为电子商务发展的中坚力量。

 

最后,智能物流可更灵活地满足消费者需求。信息化、智能化、集约化和小批量定制是未来物流的发展趋势,智能物流以客户需求为中心,灵活实施物资调动,满足下游需求。互联网拓展了营销渠道,通过互联网及时反馈消费者需求信息,信息将快速到达生产企业指令中心,而智能物流促进了资源配置的优化与高效运作,实施订单化管理,减少企业库存,降低上游经营风险。

 

总之,未来智慧物流借助其连接升级、数据升级、模式升级、体验升级、智能升级和绿色升级的力量助推供应链全方位升级,这将深刻影响社会生产与流通方式。只有立足现有规模,通过创新引领,充分发挥当下各类技术优势,尽快建立起标准化、专业化、精益化、多元化、市场化和信息化的智慧物流生态体系,未来才能促进中国物流市场的飞跃。智慧物流也必将深刻影响社会生产和流通方式,促进产业结构调整和动能转换,推进供给侧结构性改革,为我国物流行业发展保驾护航。